Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Pers Med ; 12(11)2022 Nov 05.
Article in English | MEDLINE | ID: covidwho-2099623

ABSTRACT

The clinical spectrum of SARS-CoV-2 infection ranges from asymptomatic status to mild infections, to severe disease and death. In this context, the identification of specific susceptibility factors is crucial to detect people at the higher risk of severe disease and improve the outcome of COVID-19 treatment. Several studies identified genetic variants conferring higher risk of SARS-CoV-2 infection and COVID-19 severity. The present study explored their genetic distribution among different populations (AFR, EAS, EUR and SAS). As a result, the obtained data support the existence of a genetic basis for the observed variability among populations, in terms of SARS-CoV-2 infection and disease outcomes. The comparison of ORs distribution for genetic risk of infection as well as for disease outcome shows that each population presents its own characteristics. These data suggest that each country could benefit from a population-wide risk assessment, aimed to personalize the national vaccine programs and the preventative measures as well as the allocation of resources and the access to proper therapeutic interventions. Moreover, the host genetics should be further investigated in order to realize personalized medicine protocols tailored to improve the management of patients suffering from COVID-19.

2.
JAMA Netw Open ; 5(4): e2210871, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1801995

ABSTRACT

Importance: The emergence of the highly contagious Omicron variant of SARS-CoV-2 and the findings of a significantly reduced neutralizing potency of sera from individuals with previous SARS-CoV-2 infection or vaccination highlights the importance of studying cellular immunity to estimate the degree of immune protection to the new SARS-CoV-2 variant. Objective: To determine T-cell reactivity to the Omicron variant in individuals with established (natural and/or vaccine-induced) immunity to SARS-CoV-2. Design, Setting, and Participants: This was a cohort study conducted between December 20 and 21, 2021, at the Santa Lucia Foundation Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy, among health care worker and scientist volunteers. Lymphocytes from freshly drawn blood samples were isolated and immediately tested for reactivity to the spike protein of SARS-CoV-2. Main Outcomes and Measures: The main outcomes were the measurement of T-cell reactivity to the mutated regions of the spike protein of the Omicron BA.1 SARS-CoV-2 variant and the assessment of remaining T-cell immunity to the spike protein by stimulation with peptide libraries. Results: A total of 61 volunteers (mean (range) age, 41.62 (21-62) years; 38 women [62%]) with different vaccination and SARS-CoV-2 infection backgrounds were enrolled. The median (range) frequency of CD4+ T cells reactive to peptides covering the mutated regions in the Omicron variant was 0.039% (0%-2.356%), a decrease of 64% compared with the frequency of CD4+ cells specific for the same regions of the ancestral strain (0.109% [0%-2.376%]). Within CD8+ T cells, a median (range) of 0.02% (0%-0.689%) of cells recognized the mutated spike regions, while 0.039% (0%-3.57%) of cells were reactive to the equivalent unmutated regions, a reduction of 49%. However, overall reactivity to the peptide library of the full-length protein was largely maintained (estimated 87%). No significant differences in loss of immune recognition were identified between groups of participants with different vaccination or infection histories. Conclusions and Relevance: This cohort study of immunized adults in Italy found that despite the mutations in the spike protein, the SARS-CoV-2 Omicron variant was recognized by the cellular component of the immune system. It is reasonable to assume that protection from hospitalization and severe disease will be maintained.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Female , Humans , Male , Middle Aged , Spike Glycoprotein, Coronavirus/genetics , Young Adult
3.
Diagnostics (Basel) ; 12(2)2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-1686633

ABSTRACT

The emergence of the Omicron SARS-CoV-2 variant caused public health concerns worldwide, raising the need for the improvement of rapid monitoring strategies. The present manuscript aimed at providing evidence of the utility of a diagnostic kit for the routine testing of SARS-CoV-2 infection as a cost-effective method for tracking the Omicron variant in Italy. The study was conducted on patients' naso-oropharyngeal-swab-derived RNA samples. These samples were subjected to RT-PCR using the TaqPath COVID-19 RT PCR CE IVD kit. Nonparametric testing and polynomial models fitting were used to compare the spreading of Alpha, Delta and Omicron variants. The samples of interest were correctly amplified and displayed the presence of S gene-target failure, suggesting that these patients carry the Omicron variant. The trend of diffusion was found to be significantly different and more rapid compared with that of the Alpha and Delta variants in our cohorts. Overall, these results highlight that the S gene target failure was a very useful tool for the immediate and inexpensive tracking of Omicron variant in the three weeks from the first detection. Thus, our approach could be used as a first-line screening to reduce the time and costs of monitoring strategies, facilitating the management of preventive and counteracting measures against COVID-19.

4.
Sci Immunol ; 6(66): eabl5344, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1494931

ABSTRACT

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is effective in preventing hospitalization from severe COVID-19. However, multiple reports of breakthrough infections and of waning antibody titers have raised concerns on the durability of the vaccine, and current vaccination strategies now propose administration of a third dose. Here, we monitored T cell responses to the Spike protein of SARS-CoV-2 in 71 healthy donors vaccinated with two doses of the Pfizer-BioNTech mRNA vaccine (BNT162b2) for up to 6 months after vaccination. We found that vaccination induced the development of a sustained anti-viral CD4+ and CD8+ T cell response. These cells appeared before the development of high antibody titers, displayed markers of immunological maturity and stem cell memory, survived the physiological contraction of the immune response, and persisted for at least 6 months. Collectively, these data show that vaccination with BNT162b2 elicits an immunologically competent and long-lived SARS-CoV-2­specific T cell population.


Subject(s)
BNT162 Vaccine/administration & dosage , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular/drug effects , Memory T Cells/immunology , SARS-CoV-2/immunology , Stem Cells/immunology , COVID-19/prevention & control , Female , Humans , Male
5.
J Pers Med ; 11(9)2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1390678

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 represents a public health emergency, which became even more challenging since the detection of highly transmissible variants and strategies against COVID-19 were indistinctly established. We characterized the temporal viral load kinetics in individuals infected by original and variant strains. Naso-oropharyngeal swabs from 33,000 individuals (admitted to the IRCCS Santa Lucia Foundation Drive-in, healthcare professionals and hospitalized patients who underwent routinary screening) from November 2020 to June 2021 were analyzed. Of them, 1735 subjects were selected and grouped according to the viral strain. Diagnostic analyses were performed by CE-IVD RT-PCR-based kits. The subgenomic-RNA component was assessed in 36 subjects using digital PCR. Infection duration, viral load decay speed, effects of age and sex were assessed and compared by extensive statistical analyses. Overall, infection duration and viral load differed between the groups (p < 0.05). Male sex was more present among both original and variant carriers affected with high viral load and showing fast decay speed, whereas original strain carriers with slow decay speed resulted in older (p < 0.05). Subgenomic-RNA was detected in the positive samples, including those with low viral load. This study provides a picture of the viral load kinetics, identifying individuals with similar patterns and showing differential effects of age and sex, thus providing potentially useful information for personalized management of infected subjects.

6.
Int J Infect Dis ; 108: 187-189, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1351682

ABSTRACT

OBJECTIVES: The present study compared the performance of the Lumipulse G Sars-CoV-2 Ag kit with the TaqPath COVID-19 RT-PCR CE IVD kit. METHODS: The study was conducted on 4266 naso-oropharyngeal swabs. Samples were subjected to antigen RT-PCR tests for the detection of Sars-CoV-2 and related variants. Statistical analyses were conducted in R software. RESULTS: We found 503 positives (including 138 H69-V70 deletion carriers) and 3763 negatives by RT-PCR, whereas 538 positives and 3728 negatives were obtained by antigen testing. We achieved empirical and binormal AU-ROCs of 0.920 and 0.990, accuracy of 0.960, sensitivity of 0.866, specificity of 0.973, positive and negative predictive values of 0.810 and 0.980. We obtained a positive correlation between viral loads and antigen levels (R2 = 0.81), finding a complete concordance for high viral loads (log10 copies/mL > 5.4). Antigen levels > 222 pg/mL were found to be reliable in assigning positive samples (p < 0.01). Concerning variant carriers, antigen test detected them with the same accuracy as other positive samples. CONCLUSIONS: Molecular and antigen tests should be evaluated regarding the prevalence of the area. In case of low prevalence, antigen testing can be employed as a first-line screening for the timely identification of affected individuals with high viral load, also if carriers of Sars-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Sensitivity and Specificity , Viral Load
7.
Front Immunol ; 12: 708820, 2021.
Article in English | MEDLINE | ID: covidwho-1305650

ABSTRACT

During the COVID19 pandemic, a range of vaccines displayed high efficacy in preventing disease, severe outcomes of infection, and mortality. However, the immunological correlates of protection, the duration of immune response, the transmission risk over time from vaccinated individuals are currently under active investigation. In this brief report, we describe the case of a vaccinated Healthcare Professional infected with a variant of Sars-CoV-2, who has been extensively investigated in order to draw a complete trajectory of infection. The patient has been monitored for the whole length of infection, assessing the temporal viral load decay, the quantification of viral RNA and subgenomic mRNA, antibodies (anti Sars-CoV-2, IgA, IgG, IgM) and cell-mediated (cytokine, B- and T-cell profiles) responses. Overall, this brief report highlights the efficacy of vaccine in preventing COVID19 disease, accelerating the recovery from infection, reducing the transmission risk, although the use of precautionary measures against Sars-CoV-2 spreading still remain critical.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Health Personnel , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Adult , Asymptomatic Diseases , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/transmission , Disease Transmission, Infectious , Female , Humans , Immunity, Humoral , Italy , RNA, Viral/analysis , Risk , Vaccination , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL